События Дом

На замену электронным датчикам идут высокотехнологичные растения

«Растения можно крайне эффективно использовать в качестве технологической платформы, - рассказывает автор работы Майкл Страно, химик из Массачусетского технологического института. – Они самостоятельно восстанавливаются, демонстрируют экологическую устойчивость, выживают в суровых условиях, а также обладают собственным источником энергии и механизмом распределения воды».

Страно и его коллеги изучают новую научную сферу под названием «растительная нанобионика». «Нано» означает масштабы материалов порядка одной миллиардной метра, а понятие «бионика» связано с использованием природы в качестве средства для вдохновения инженеров.
Растения со сверхвозможностями
Изначально исследователи работали над созданием самовосстанавливающихся солнечных элементов на основе растительных клеток. Они способны превращать свет в химическую энергию в форме сахаров и других соединений в ходе процесса, известного как фотосинтез. В нем используются хлоропласты – крошечные энергетические станции внутри клеток растений.
Ученые планировали изолировать хлоропласты от растений и сделать их эффективнее. Но в случае такого отделения они через несколько часов начинают распадаться из-за повреждения светом и кислородом.
Для защиты хлоропластов от повреждений исследователи поместили в них крошечные частицы антиоксидантов, или наночастицы, собирающие радикалы кислорода и другие высокоактивные молекулы. Для доставки наночастиц исследователи обернули их в насыщенную молекулу, что позволило им проникнуть сквозь жировую мембрану хлоропластов. В результате действия наночастиц количество поврежденных молекул резко уменьшилось.
Затем исследователи обернули крошечные цилиндры под названием «углеродные нанотрубки» негативно заряженной ДНК и поместили их в хлоропласты. Нанотрубки сработали как искусственные антенны, позволившие растению уловить больше света, чем обычно.

На замену электронным датчикам идут высокотехнологичные растения
Уровень активности фотосинтеза в хлоропластах с нанотрубками оказался почти в 50 раз выше, чем в изолированных органеллах. Когда ученые поместили в них и частицы антиоксидантов, и углеродные нанотрубки, клетки продолжили успешно и в течение продолжительного времени функционировать вне растений.
Ученым удалось также повысить энергоэффективность живых растений. Они внедрили наночастицы в небольшое цветущее растение арабидопсис, в результате чего уровень фотосинтеза возрос на 30 процентов. Однако влияние этого механизма на производство сахара остается под покровом тайны.
Датчики загрязнения
Кроме прочего Страно и его коллеги нашли способ, как превратить растение арабидопсис в датчик химического загрязнения. Они использовали углеродные нанотрубки, выявляющие загрязнитель окись азота, который вырабатывается в результате горения.
Ранее ученые разработали углеродные нанотрубки, выявляющие тротиловую взрывчатку и нервнопаралитический газ зарин, и на основе этих достижений они могут превратить растения в датчики, фиксирующие наличие этих ядовитых веществ в малых концентрациях. Нанобионические растения могут также использоваться для отслеживания присутствия пестицидов, грибковых инфекций или токсинов бактериального происхождения. Кроме того, группа исследователей в данное время работает над внедрением в растения электронных материалов.

Источник: http://econet.ru/

Комментарии (Всего: 0)

Добавить комментарий

Что-то интересное

    Больше материалов
    Больше материалов
  • facebook
    Нажмите Нравится,
    чтобы читать Econet.ru в Facebook
    Спасибо, я уже с Econet.ru!