Подпишись

Реактор холодного ядерного синтеза в стакане воды

Экология потребления.Наука и открытия: После серии экспериментов, был построен весьма производительный реактор холодного ядерного синтеза на основе наномембраны и резонатора оригинальной конструкции.

Почему до сих пор мы используем традиционные источники энергии, когда уже много лет известны альтернативные источники сравнительно дешёвой энергии?

Причин этому масса, как то: экономические, технические и даже политические.

Но, начнём с самого начала.

Миллионы лет планета Земля с помощью всевозможных живых организмов перерабатывала углекислый газ в уголь, нефть и природный газ. Превращать все эти природный богатства обратно в углекислый газ оказалось сравнительно просто, достаточно было научиться использовать огонь. Собственно, этим человечество и занимается до сих пор.

По мере развития науки и техники, появились преобразователи энергии, позволяющие использовать энергию воды, солнца, ветра, геотермальных источников и даже энергию морских волн. Но все эти преобразователи имеют ряд недостатков, и главный из них — это зависимость от сил природы.

Реактор холодного ядерного синтеза в стакане воды

Попытки человечества обуздать энергию расщепляющегося атомного ядра до поры до времени имели успех, но оказались не менее опасными для природы, чем обычные тепловые электростанции.

Что же нас ждёт в будущем?

В далёком будущем, нас ждут новые технологии получения энергии с помощью реакторов, так называемого, холодного ядерного синтеза. А в ближайшем будущем, нас в этом плане не ждёт ничего хорошего.

Первое и основное препятствие этому – экономические интересы. Крупный капитал ведёт бизнес согласно своим стратегическим планам, в которых пока нет места для новых технологий. Глупо выводить деньги из бизнеса, когда доходы всё время растут, как на дрожжах.

Так что, пока стоимость нефти и газа не обвалится настолько, что добыча станет нерентабельной, не стоит ждать прорыва в области новых технологий производства энергии. Но, цены вряд ли обвалятся, так как ресурсы всё время истощаются, а это напротив подстёгивает рост цен.

Почему учёные не занимаются исследованиями в этом направлении?

Учёные занимаются исследованиями в том направлении, на которое выделятся средства.

Например, миллионы долларов выделяются каждый год на разработку новых препаратов для лечения рака. Но, средства выделяют крупные фармацевтические компании, которым нужно сбывать лекарства больным раком, а не излечивать пациентов, тем самым разрушая свой хорошо отлаженный бизнес.

То же самое случилось и с генераторами, работающими на нетрадиционных видах топлива. И в самом деле, на научные исследования в области термоядерного синтеза (Токамак, Лазерный термоядерный синтез) выделяются огромные суммы, на которые кормятся тысячи учёных. Уже полвека идут эксперименты, а воз и ныне там. То ли учёные принципиально не хотят менять доктрину, то ли терпеливо ждут, пока закончится нефть… 

Так вот, некоторые весьма полезные для общества технологии могут оказаться вредными не только для крупного капитала, но и для всей мировой экономической системы. Ведь ни для кого не секрет, что экономика некоторых стран целиком зависит от добычи углеводородного сырья.

Так что, только революция в энергетике, которая состоится в отдалённом будущем, сможет что-то кардинально изменить в этом замкнутом круге.

Почему энтузиасты не строят компактные электростанции на основе холодного ядерного синтеза?

Большинство известных реакторов ХЯС существуют только в виде небольших лабораторных установок, описание которых часто бывают недостаточно подробными. Кроме этого, материалы и реактивы, используемые для постройки таких реакторов сложно добыть человеку, не имеющему доступа к научным лабораториям. Например, захотите Вы раздобыть бутылку тяжёлой воды, а вас начнут подозревать в обогащении урана. 

Но, если очень хочется, то можно уже сейчас попытаться хотя бы поэкспериментировать с настольными реакторами вроде реакторов Мартина Флейшмана и Стенли Понса или Андреа Росси.

Предыстория

История этого эксперимента ведёт начало от случайной встречи на курорте. Тогда мне понадобились обычные батарейки, и мы с супругой отправились в магазин. Там, увидев срок годности пальчиковых элементов Energizer (около десяти лет), я попытался пошутить, вспомнив, как Ходжа Насреддин обещал эмиру за 10 лет научить ишака разговаривать.

Сам Хаджа Насреддин так прокомментировал это: «За десять лет, либо ишак умрёт, либо эмир…» Рядом стоящий покупатель прореагировал на шутку. Как оказалось, им был инженер с русскими корнями. Слова за слово и мы с ним уже обсуждали проблемы мировой энергетики. Разговор продолжился за рюмкой чая. В той дискуссии новый знакомый поведал мне интересную историю. Суть истории в том, что, в прошлом, мой визави работал в лаборатории по разработке опреснительных установок для Австралии. Установки эти работают на основе фильтров обратного осмоса. Так вот, в одном из экспериментов, им было получено аномальное выделение тепла, с сопутствующим разрушением мембраны. Тогда я не придал этому большого значения, но потом идея эта всплыла в памяти и начала меня преследовать. В результате, я пустился во все тяжкие – занялся экспериментальной физикой.

Реактор холодного ядерного синтеза в стакане воды

После серии экспериментов, был построен весьма производительный реактор на основе наномембраны и резонатора оригинальной конструкции.

В видеоролике, показана работа реактора ХЯС с выделением аномально высокого количества тепла. Подписывайтесь на наш youtube канал Эконет.ру https://www.youtube.com/channel/UCXd71u0w04qcwk32c8kY2BA/videos

Чтобы убедить скептиков в подлинности эксперимента, были предприняты некоторые меры. В частности, установка была собрана на стеклянной подставке. Для регистрации отсутствия скрытого инфракрасного излучения была использована обычная свеча, а для регистрации отсутствия высокочастотного электромагнитного излучения – неоновая лампа.

Первичный источник энергии – батарея была подключена с помощью сравнительно тонкого провода, что исключает возможность передачи большого количества энергии в нагрузку.

Если Вы уже посмотрели этот ролик, то могли заметить, что реактор выделят большое количество тепла. Между тем, питание реактора осуществляется от батареи, составленной из четырёх обычных щелочных элементов типоразмера ААА. Ток, контролируемый с помощью амперметра, достигает величины всего 0,35 Ампера. Несложные расчёты позволяют сделать вывод, что КПД установки многократно превышает 100%, так как энергия батарей сравнительно мала.

Но, давайте лучше посчитаем.

Исходные данные:

Вода - 500 грамм

Начальная температура раствора - 22°С

Конечная температура раствора - 93°С

Время, затраченное на нагрев - 720 секунд.

Теплоёмкость воды - 4,2 Дж/Грамм*°С

Сколько всего выделилось энергии?

4,2*500 (гр) * 71 (°С) = 149100 (Дж)

Какая мощность требуется для этого?

149100 (Дж) / 720 (сек) ≈ 207 (Ватт)

Если бы батарея была даже литий-ионной и отдавала такую мощность, она должна была бы генерировать ток:

207 (Ватт) / (3,6 * 4) (Вольт) ≈ 14 (Ампер)

Понятно, что для столь высоких значений тока нужны были бы провода большего сечения, чем те, что были использованы.

Замеры тока батареи показали 0,35 Ампера. При этом под нагрузкой было зафиксировано напряжение 4,82 Вольта.

Посчитаем мощность, отдаваемую батареей:

4,82 (Вольт) * 0,35(Ампер) ≈ 1,7 (Ватт)

Остаётся рассчитать КПД:

207 (Ватт) / 1,7 (Ватт) ≈ 122 (Раз)

Поспешу ответить на вопрос о перспективах данной технологии. Пока не удалось обеспечить продолжительную работу реактора из-за быстрого разрушения мембраны. Среднее время работы ректора – 35 минут. Рекордное – 1 час 23 минуты. Так что, подключить реактор к батарее парового отопления пока не получится. опубликовано econet.ru 

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

Присоединяйтесь к нам в Facebook , ВКонтактеОдноклассниках

Источник: https://econet.ru/

Понравилась статья? Напишите свое мнение в комментариях.
Комментарии (Всего: 0)

    Добавить комментарий

    Пройдите тест!
    Что-то интересное