Подпишитесь

Электрооптическое устройство обеспечит сверхбыстрые процессоры

Первое в истории интегрированное наноразмерное устройство, которое может быть запрограммировано с помощью фотонов или электронов, было разработано учеными исследовательской группы Хариша Бхаскарана из Оксфордского университета.

Электрооптическое устройство обеспечит сверхбыстрые процессоры

В сотрудничестве с исследователями из университетов Мюнстера и Эксетера ученые создали первое в своем роде электрооптическое устройство, которое соединяет области оптических и электронных вычислений. Это обеспечивает элегантное решение для создания более быстрых и энергоэффективных модулей памяти и процессоров.

Фотонные вычисления

Вычисление на скорости света было заманчивой, но неуловимой перспективой, но с этим достижением оно находится в ощутимой близости. Использование света для кодирования, а также передачи информации позволяет процессам происходить с предельной скоростью - световой. Хотя в последнее время экспериментально уже было продемонстрировано использование света для определенных процессах, отсутствует компактное устройство для взаимодействия с электронной архитектурой традиционных компьютеров. Несовместимость электрических и световых вычислений в основном обусловлена ​​различными объемами взаимодействия, в которых работают электроны и фотоны. Электрические микросхемы должны быть небольшими для эффективной работы, тогда как оптические микросхемы должны быть большими, поскольку длина волны света больше, чем у электронов.

Электрооптическое устройство обеспечит сверхбыстрые процессоры

Чтобы преодолеть эту сложную проблему, ученые придумали решение ограничить свет наноразмерами, как это подробно описано в их статье «Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality», опубликованной в журнале Science Advances, 29 ноября 2019 года. Они создали дизайн, который позволил им сжать свет до наноразмерного объема через, так называемый, поверхностный плазмонный поляритон.

Значительное уменьшение размера в сочетании со значительно увеличенной плотностью энергии - это то, что позволило им преодолеть очевидную несовместимость фотонов и электронов для хранения и вычисления данных. Более конкретно, было показано, что посредством отправки электрических или оптических сигналов состояние фото- и электро-чувствительного материала трансформировалось между двумя различными состояниями молекулярного порядка. Кроме того, состояние этого фазопреобразующего материала считывалось либо светом, либо электроникой, что сделало устройство первой электронно-оптической ячейкой памяти с наноразмерной структурой и энергонезависимыми характеристиками.

«Это очень многообещающий путь вперед в области вычислений, особенно в тех областях, где требуется высокая эффективность обработки», - заявляет Николаос Фармакидис, аспирант и соавтор работы.

Соавтор Натан Янгблад продолжает: «Это, естественно, включает в себя применение в искусственном интеллекте, где во многих случаях потребности в высокопроизводительных вычислениях с низким энергопотреблением намного превышают наши текущие возможности. Считается, что сопряжение фотонных вычислений на основе света с электронным аналогом станет ключ к следующей главе в CMOS-технологиях». опубликовано econet.ru по материалам phys.org

Подписывайтесь на наш youtube канал!

Подписывайтесь на наш канал Яндекс Дзен!

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

Источник: https://econet.ru/

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:
, чтобы видеть ЛУЧШИЕ материалы у себя в ленте!
Комментарии (Всего: 0)

    Добавить комментарий

    Не бойтесь кого—то потерять. Вы не потеряете того, кто нужен Вам по жизни. Теряются те, кто послан вам для опыта. Остаются те, кто послан Вам судьбой. Фридрих Ницше
    Что-то интересное